
Dashboard Reference

2006-05-23

Apple Computer, Inc.
© 2004, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac
OS, and QuickTime are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Finder and Safari are trademarks of Apple
Computer, Inc.

Objective-C is a registered trademark of
NeXT Software, Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to Dashboard Reference 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 7

Chapter 1 Widget Object 9

Properties 9
identifier 9
ondragstart 9
ondragend 10
onhide 10
onremove 10
onshow 10

Methods 11
openApplication 11
openURL 11
preferenceForKey 11
prepareForTransition 11
performTransition 12
setCloseBoxOffset 12
setPreferenceForKey 12
system 12

Chapter 2 Regions 15

Properties 15
-apple-dashboard-region 15

Parameters 16
dashboard-region 16
none 17

Chapter 3 Dashboard Info.plist Keys 19

Chapter 4 Widget Plug-in Interface 21

Methods 21

3
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

initWithWebView: 21
windowScriptObjectAvailable: 21

Document Revision History 23

4
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Tables

Chapter 1 Widget Object 9

Table 1-1 widget.system properties available during synchronous usage 13
Table 1-2 widget.systemproperties and methods available during asynchronous usage

13

Chapter 2 Regions 15

Table 2-1 dashboard-region() parameters 16

Chapter 3 Dashboard Info.plist Keys 19

Table 3-1 Custom property list keys 19

5
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

T A B L E S

This document contains reference material for creating Dashboard widgets. It documents the JavaScript
objects available to widgets and the interfaces used to configure and extend the behavior of a widget.
It also covers the Objective-C interface used to create widget plug-ins.

Who Should Read This Document?

Dashboard Reference is for any widget creator looking for detailed information about the various
interfaces available to widgets.

Organization of This Document

This document contains the following chapters:

 ■ “Widget Object” (page 9) describes the methods and properties of the Widget object—a JavaScript
object you use to manage widget-specific behavior.

 ■ “Regions” (page 15) describes the use of regions within your widget. Regions allow you to specify
areas for specific uses.

 ■ “Dashboard Info.plist Keys” (page 19) describes the custom and expected keys to include in your
widget’s information property list file.

 ■ “Widget Plug-in Interface” (page 21) describes the interface used to create custom plug-ins for
your widget.

See Also

For instructions on how to create a Dashboard widget, see Dashboard Tutorial in Apple Applications
Documentation. Read Dashboard Programming Topics for conceptual information on the various
technologies available to widget developers.

Who Should Read This Document? 7
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Dashboard Reference

For more information on the HTML, CSS, and JavaScript capabilities found in Web Kit, the technology
behind Dashboard widgets, consult:

 ■ Safari HTML Reference

 ■ Safari CSS Reference

 ■ Safari JavaScript Reference

8 See Also
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Dashboard Reference

The Widget object is a JavaScript object that provides Dashboard-specific extensions. When your
widget is loaded, Dashboard automatically creates an instance of this object for use in the JavaScript
code of your widget. The name of this instance is widget.

Note: The properties and methods found in this chapter are those supported by Apple for developing
widgets. Any widget properties and methods not found here are subject to change without notice.

Properties

The following sections describe the properties of the Widget object.

identifier

Contains a unique identifier for this instance of the widget.

widget.identifier

This read-only property contains a string value that is unique among all of the instances of a single
widget. This value is assigned by Dashboard and persists between instantiations of each widget
instance.

ondragstart

Contains the event handler to be called upon the start of a widget drag.

widget.ondragstart

Assign a function to this property if you want to be notified when your widget has begun a drag.
You use this function to change your widget’s user interface while it is being dragged. Your function
declaration should look like the following:

function MyDragStartHandler() { ... }

Properties 9
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Widget Object

ondragend

Contains the event handler to be called upon the finish of a widget drag.

widget.ondragend

Assign a function to this property if you want to be notified when your widget has ended a drag.
You use this function to change your widget’s user interface after it has been dragged. Your function
declaration should look like the following:

function MyDragEndHandler() { ... }

onhide

Contains the event handler to be called when the Dashboard layer is hidden.

widget.onhide

Assign a function to this property if you want to be notified when your widget is hidden. You use
this function to deactivate your widget and put it into a quiescent state. Your function declaration
should look like the following:

function MyHiddenHandler() { ... }

onremove

Contains the function to be called when your widget is removed from the Dashboard layer.

widget.onremove

Assign a function to this property if you want to be notified when your widget is removed from the
Dashboard layer. Upon receiving this event, your widget should perform any necessary cleanup
operations, such as save its preferences, remove cache files, and release any resources it currently
holds. Your function declaration should look like the following:

function MyRemoveHandler() { ... }

onshow

Contains the function to be called when the Dashboard layer is shown.

widget.onshow

Assign a function to this property if you want to be notified when your widget is shown. You use
this function to activate your widget and begin processing data again after being quiescent. Your
function declaration should look like the following:

function MyShowHandler() { ... }

10 Properties
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Widget Object

Methods

The following sections describe the methods of the Widget object.

openApplication

Launches the application with the specified bundle identifier.

widget.openApplication(bundleId)

Use this method to launch the application indicated by bundleId on the target system. Calling this
method dismisses the Dashboard layer.

openURL

Opens the specified URL in the user’s preferred browser.

widget.openURL(url)

This method opens the specified URL and dismisses the Dashboard layer. This method does not
permit the opening of URLs that use the file: scheme unless the AllowFileAccessOutsideOfWidget
key is set in the widget’s information property list file.

preferenceForKey

Returns the preference associated with the specified key.

widget.preferenceForKey(key)

Use this method to retrieve a preference value previously stored with a call to setPreferenceForKey.
The method returns a string with the contents of the preference, or undefined if no such preference
exists.

prepareForTransition

Notifies Dashboard that you are about to perform a transition to or from its reverse side.

widget.prepareForTransition(transition)

This method prepares your widget for either showing or hiding its reverse side.

Passing the string “ToFront” for transition disables screen updates within your widget’s user
interface so that you can prepare it for displaying your widget’s reverse side. Passing the string
“ToBack” for transition freezes your widget’s user interface so that you can prepare it for displaying
the main contents again. When your HTML layers are ready, call performTransition to display
them.

Methods 11
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Widget Object

performTransition

Runs an animation to toggle between your widget’s reverse and contents.

widget.performTransition()

You call this method after first calling prepareForTransition, which indicates whether you are
displaying your widget’s reverse side or contents. When you call performTransition, Dashboard
begins an animation that makes the widget appear to flip over and display the new content.

Prior to calling this method, you should also adjust the style sheet properties of your HTML to reflect
the change in what is about to be displayed. For example, before calling this method to show your
reverse side, you should show the HTML elements associated with your reverse side and hide those
elements associated with your widget’s contents.

setCloseBoxOffset

Changes the location of the widget close box.

widget.setCloseBoxOffset(x, y)

Use this method to move your widget’s close box. This method centers the close box x pixels from
the left edge of the widget and y pixels down from the top of the widget. Only values between 0 and
100 are allowed for x and y.

setPreferenceForKey

Associates a preference with the given key.

widget.setPreferenceForKey(preference, key)

The preference and key parameters contain strings representing the preference you want to store
and the key with which you want to associate it. Specifying null for the preference parameter
removes the specified key from the preferences.

Preferences saved using setPreferenceForKey are saved as clear text and therefore are not
recommended for saving passwords or other sensitive information.

system

Executes a command-line utility.

widget.system(command, endHandler)

The command parameter is a string that specifies a command utility to be executed. It should specify
a full or relative path to the command-line utility and include any arguments. For example:

widget.system(“/usr/bin/id -un”, null);

12 Methods
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Widget Object

The endHandler parameter specifies a handler to be called when the command has finished executing.
If NULL, the entire method is run synchronously, meaning that all execution inside the widget halts
until the command is finished. When running synchronously, these options are available:

Table 1-1 widget.system properties available during synchronous usage

UsageDefinitionProperty

var output =
widget.system(“/usr/bin/id -un”,
null).outputString;

The output of the command, as
placed on stdout.

outputString

var error =
widget.system(“/usr/bin/id -un”,
null).errorString;

The output of the command, as
placed on stderr.

errorString

var status =
widget.system(“/usr/bin/d -un”,
null).status;

The exit status of the command.status

If endHandler is specified, the command is run asynchronously, meaning that the command runs
concurrently and the handler is called when execution is finished. When run asynchronously,
widget.system returns an object that can be saved and used to perform other operations upon the
command:

Table 1-2 widget.system properties and methods available during asynchronous usage

DescriptionPurposeOption

The current string written to stdout (standard output)
by the command.

Propertycommand.outputString

The current string written to stderr (standard error
output) by the command.

Propertycommand.errorString

The command’s exit status, as defined by the command.Propertycommand.status

A function called whenever the command writes to
stdout. The handler must accept a single argument;
when called, the argument contains the current string
placed on stdout.

Event Handlercommand.onreadoutput

A function called whenever the command writes to
stderr. The handler must accept a single argument;
when called, the argument contains the current string
placed on stderr.

Event Handlercommand.onreaderror

Cancels the execution of the command.Methodcommand.cancel()

Writes a string to stdin (standard input).Methodcommand.write(string)

Closes stdin (EOF).Methodcommand.close()

Methods 13
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Widget Object

Note: To use widget.system, you need to set the AllowSystem key in your Info.plist. For more
information, see “Dashboard Info.plist Keys” (page 19).

14 Methods
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Widget Object

Regions are CSS properties that you use to set bounds. Currently, Dashboard specifies only one type
of region, a control region. Specifiying a control region means that if a user attempts to drag a widget
from within a specified region, the drag will not occur and the widget will not move.

Regions come in two shapes: rectangles and circles. Any combination of these shapes is allowed,
letting you create complex control regions for use with odd shapes.

Once you have defined a region within a style element, you need to wrap an element within your
markup with that style. For instance, a control region definition may look like this:

.control-circle-example {
...
-apple-dashboard-region: dashboard-region(control circle 5px 5px 5px 5px);
...

}

Now that you’ve defined a style, you need to apply it to an element:

<div class=”control-circle-example”></div>

Properties

The following property is defined for use when specifying regions within a widget.

-apple-dashboard-region

Specifies the property to be defined.

-apple-dashboard-region:

This property tells Dashboard that you are about to specify a region. Without any parameters, this
property does nothing. As parameters to this method, you need to specify regions using the
dashboard-region parameter.

Properties 15
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Regions

Parameters

The following parameters are defined for use when specifying regions within a widget.

dashboard-region

Specifies the type and bounds of a region.

dashboard-region(label, geometry-type)
dashboard-region(label, geometry-type, offset-top, offset-right, offset-bottom,
offset-left)

This parameter function is used in conjunction with the -apple-dashboard-region property. It
specifies a region’s bounds and type, in function form. Table 2-1 (page 16) shows the values expected
by the dashboard-region parameter.

Table 2-1 dashboard-region() parameters

DescriptionParameter

Required; specifies the type of region being defined; control is the only used
value.

label

Required; specifies the shape of the region, either circle or rectangle.geometry-type

Optional; specifies the offset from the top of the wrapped area from where the
defined region should begin, in pixels. Negative values not allowed.

offset-top

Optional; specifies the offset from the right of the wrapped area from where the
defined region should begin, in pixels. Negative values not allowed.

offset-right

Optional; specifies the offset from the bottom of the wrapped area from where
the defined region should begin, in pixels. Negative values not allowed.

offset-bottom

Optional; specifies the offset from the left of the wrapped area from where the
defined region should begin, in pixels. Negative values not allowed.

offset-left

If you specify circle for the geometry-type parameter, the control region created is centered in
between the specified offsets (or the edges of the region, if no offsets are provided). Of the circle
region’s width and height (which ideally should be equal), the resulting control region’s diameter is
the smaller value.

When using the offset parameters, you either provide values for all four offsets or none of them. Note
that if you do not specify values for the offset parameters, a default value of 0 is used for each of them.

You can chain multiple dashboard-region parameters together in one apple-dashboard-region
property declaration, allowing you to create complex-shaped regions:

.equals-button-example {
...
-apple-dashboard-region:

dashboard-region(control circle 0px 0px 80px 0px)

16 Parameters
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Regions

dashboard-region(control rectangle 10px 0px 10px 0px)
dashboard-region(control circle 80px 0px 0px 0px);

...
}

Some elements have control regions assigned to them by default:

 ■ button

 ■ input

 ■ select

 ■ textarea

Whenever you use one of these elements you do not need to manually specify a control region them.
The region specified on these elements extend to their edges:

button, input, select, textarea {
-apple-dashboard-region:dashboard-region(control rectangle);

}

none

Removes any regions on an element.

none

Setting the -apple-dashboard-region property to none removes any region applied to an element.

Parameters 17
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Regions

18 Parameters
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Regions

Dashboard widgets provide information to the system and to Dashboard through the use of an
information property list (Info.plist) file. The keys in a widget’s information property list file
identify the type of the bundle and the location of the widget’s main HTML file

Table 3-1 lists the custom keys associated with all widgets. Dashboard uses these keys to configure
the widget and prepare it for display. To learn more about using these keys in a widget, including a
sample Info.plist file that you can base your own widget's Info.plist file off of, read Widget
Basics in Dashboard Tutorial.

Table 3-1 Custom property list keys

DescriptionTypeKey

Optional; specify if your widget requires access to the file
system outside of your widget. Access is limited by the user’s
permissions.

BooleanAllowFileAccess-
OutsideOfWidget

Optional; specify if your widget requires access to the file
system, Web Kit and standard browser plug-ins, Java applets,
network resources, and command-line utilities.

BooleanAllowFullAccess

Optional; specify if your widget requires access to Web Kit
and standard browser plug-ins, such as QuickTime.

BooleanAllowInternetPlugins

Optional; specify if your widget requires access to Java applets.BooleanAllowJava

Optional; specify if your widget requires access to any
resources that are not file-based, including those acquired
through the network.

BooleanAllowNetworkAccess

Optional; specify if your widget requires access to
command-line utilities using the widget script object.

BooleanAllowSystem

Optional; specify if your widget uses the Apple-provided
JavaScript classes known as Apple Classes in a backward
compatible way. See Introduction to the Apple Classes for
more information.

BooleanBackwardsCompatible-
ClassLookup

19
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Dashboard Info.plist Keys

DescriptionTypeKey

Optional; the offset for the location of the widget close box on
the x-axis. Positive values move toward the right. Must be
between 0 and 100.

NumberCloseBoxInsetX

Optional; the offset for the location of the widget close box on
the y-axis. Positive values move toward the bottom. Must be
between 0 and 100.

NumberCloseBoxInsetY

Optional; contains an array of strings. Each string is the name
of a font included within the widget bundle, located at its root.

ArrayFonts

Optional; contains a number value indicating the height of the
widget, measured in pixels.

NumberHeight

Required; contains a string with the relative path to the
widget’s main HTML file. This file is the implementation file
of the widget.

StringMainHTML

Optional; contains a string with the name of a custom plug-in
used by the widget. Plug-ins are located inside the widget
bundle.

StringPlugin

Optional; contains a number value indicating the width of the
widget, measure in pixels. This key is optional.

NumberWidth

In addition to the preceding keys, the following keys are required and should be included in your
widget’s information property list file:

 ■ CFBundleIdentifier

 ■ CFBundleName

 ■ CFBundleDisplayName

You may also include other keys such as CFBundleVersion or other keys that provide information
to entities such as the Finder. For detailed descriptions of how these keys are used, see Property List
Key Reference in Runtime Configuration Guidelines in Mac OS X Documentation.

20
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Dashboard Info.plist Keys

If you want to define a custom plug-in to use with a widget, the principal class of your plug-in must
support the Widget Plug-in interface. This interface provides basic initialization support for your
plug-in code along with access to the web view of your widget. You can also use this interface to
register custom JavaScript objects for use by your widget code.

While the Widget Plug-in interface is required of all widget plug-ins, implementing the optional
Webscripting protocol provides you with the ability to bridge data between your plug-in's native
code and your widget's JavaScript code. Learn more about the Webscripting protocol by reading
Using Objective-C From JavaScript and WebScripting.

Methods

The following sections describe the methods of the Widget Plug-in interface.

initWithWebView:

Default initializer for your plug-in.

- (id) initWithWebView:(WebView*)webView

Use this method to perform basic initialization of your widget’s principal class. The webViewparameter
contains the view object used to display the widget contents. This method is called before your widget’s
HTML page is fully loaded.

If you need to do additional initialization after your plug-in is loaded, you should expose a method
from your plug-in object to perform that initialization. You can then call that method from the onload
event handler of your widget’s HTML page. See “windowScriptObjectAvailable:” (page 21) for
information on how to create a bridge between your Objective-C classes and JavaScript.

Implementation of this method is required.

windowScriptObjectAvailable:

Indicates that a scriptable object is now available.

Methods 21
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Widget Plug-in Interface

- (void) windowScriptObjectAvailable:(WebScriptObject *) windowScriptObject

This method notifies you that the window scripting object is available for your use. You can use this
method to expose your Objective-C classes as JavaScript objects so that they can be accessed by your
widget code.

Note: The objects you expose to JavaScript using this technique may conform to the WebScripting
interface of Web Kit, which is available in Mac OS X version 10.4. The Web Kit uses the methods of
this interface to allow you to control which methods you expose from your Objective-C class. For
more information, see Using Objective-C From JavaScript in Cocoa User Experience Documentation.

When your plug-in receives the windowScriptObjectAvailable:message, call the setValue:forKey:
method of windowScriptObject to associate your Objective-C object (the value) with the object name
JavaScript clients should use.

The following example registers an instance of the MyScriptObject class:

- (void) windowScriptObjectAvailable:(WebScriptObject *) scriptObj
{

MyScriptObject* myObj = [[MyScriptObject* alloc] init];

[scriptObj setValue:myObj forKey:@"MyScriptObj"];
}

After you publish your object in this manner, you can refer to it in JavaScript code by the name you
gave it. From the preceding example, if the object exposed a method called finishInitialization,
you could call that method using the following JavaScript code:

function MyWebPageLoadHandler()
{

if (MyScriptObj)
{

MyScriptObj.finishInitialization();
}

...
}

22 Methods
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Widget Plug-in Interface

This table describes the changes to Dashboard Reference.

NotesDate

Revised descriptions on Info.plist keys.2006-05-23

Added information about Apple Classes-related Info.plist keys and links
to more documentation about the WebScripting protocol.

2006-01-10

Added links to Safari Reference documentation and clarified acceptable
close box inset Info.plist values, close box offset parameter values, and
saved preference security.

2005-07-07

Revised Info.plist key and Dashboard Region information.2005-05-20

Revised explanation for the Widget object and added link for additional
documentation for the Webscripting protocol .

2005-04-29

Updated for public release of Mac OS X v10.4. First public version.

Includes revised Widget object, Info.plist, and Dashboard region reference.2004-11-18

Updated Info.plist chapter and widget.onshow/onhide definitions.

Updated Widget object reference. Relocated Web Kit Canvas Extension
chapter to Safari JavaScript Reference.

2004-11-02

Updated Canvas, Info.plist, and Widget object reference and added Regions
chapter. Renamed document to Dashboard Reference.

2004-10-04

First version of Dashboard Developer Reference.2004-06-28

23
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

24
2006-05-23 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

	Dashboard Reference
	Contents
	Tables
	Introduction
	Widget Object
	Properties
	identifier
	ondragstart
	ondragend
	onhide
	onremove
	onshow

	Methods
	openApplication
	openURL
	preferenceForKey
	prepareForTransition
	performTransition
	setCloseBoxOffset
	setPreferenceForKey
	system

	Regions
	Properties
	-apple-dashboard-region

	Parameters
	dashboard-region
	none

	Dashboard Info.plist Keys
	Widget Plug-in Interface
	Methods
	initWithWebView:
	windowScriptObjectAvailable:

	Revision History

